
28. Z. Gedalof, D. L. Peterson, N. J. Mantua, J. Am. Water
Resour. Assoc. 40, 1579–1592 (2004).

29. E. R. Lutz, A. F. Hamlet, J. S. Littell, Water Resour. Res.
48, W01525 (2012).

30. F. M. Ralph et al., Geophys. Res. Lett. 33, L13801 (2006).
31. P. A. O’Gorman, C. J. Muller, Environ. Res. Lett. 5,

025207 (2010).
32. P. C. D. Milly, K. A. Dunne, A. V. Vecchia, Nature 438,

347–350 (2005).
33. E. P. Salathé Jr., L. R. Leung, Y. Qian, Y. Zhang, Clim.

Change 102, 51–75 (2010).
34. D. D. Breshears et al., Proc. Natl. Acad. Sci. U.S.A. 102,

15144–15148 (2005).
35. S. J. Wenger et al., Proc. Natl. Acad. Sci. U.S.A. 108,

14175–14180 (2011).

36. G. T. Pederson, J. L. Betancourt, G. J. McCabe, Geophys.
Res. Lett. 40, 1811–1816 (2013).

37. J. R. Minder, J. Clim. 23, 2634–2650 (2010).

Acknowledgments: We acknowledge the World Climate
Research Programme's Working Group on Coupled Modelling,
which is responsible for CMIP, and we thank the climate
modeling groups (listed in table S1 of this paper) for
producing and making available their model output. The U.S.
Department of Energy's Program for Climate Model Diagnosis
and Intercomparison provides coordinating support for CMIP
and led the development of software infrastructure in
partnership with the Global Organization for Earth System
Science Portals. We thank the reviewers for their comments
and insights, which substantially improved the paper. J.T.A.

was supported by NSF’s Experimental Program to Stimulate
Competitive Research (EPSCoR) (EPS-0814387). This work was
partially supported by NASA through NNH11ZDA001N-FIRES.

Supplementary Materials
www.sciencemag.org/content/342/6164/1360/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S9
Tables S1 and S2
References (38–60)

24 June 2013; accepted 8 November 2013
10.1126/science.1242335

Long-Term Dynamics of Adaptation in
Asexual Populations
Michael J. Wiser,1,2 Noah Ribeck,1,3 Richard E. Lenski1,2,3*

Experimental studies of evolution have increased greatly in number in recent years, stimulated by the
growing power of genomic tools. However, organismal fitness remains the ultimate metric for
interpreting these experiments, and the dynamics of fitness remain poorly understood over long time
scales. Here, we examine fitness trajectories for 12 Escherichia coli populations during 50,000
generations. Mean fitness appears to increase without bound, consistent with a power law. We also
derive this power-law relation theoretically by incorporating clonal interference and diminishing-returns
epistasis into a dynamical model of changes in mean fitness over time.

The dynamics of evolving populations are
often discussed in terms of movement on
an adaptive landscape, where peaks and

valleys are states of high and low fitness, respec-
tively. There is considerable interest in the struc-
ture of these landscapes (1–7). Recent decades
have seen tremendous growth in experiments
using microbes to address fundamental questions
about evolution (8), but most have been short in
duration. The Long-Term Evolution Experiment
(LTEE)withEscherichia coli provides the oppor-
tunity to characterize the dynamics of adaptive
evolution over long periods under constant con-
ditions (1, 9, 10). Twelve populationswere founded
from a common ancestor in 1988 and have been
evolving for >50,000 generations, with samples
frozen every 500 generations. The frozen bacteria
remain viable, and we use this “fossil record” to
assess whether fitness continues to increase and
to characterize mean fitness trajectories (11).

We first performed 108 competitions, in the
same conditions as the LTEE, between samples
from nine populations at 40,000 and 50,000 gen-
erations against marked 40,000-generation clones
(11). Three populations were excluded for tech-
nical reasons (11). Fitness was quantified as the
dimensionless ratio of the competitors’ realized

growth rates. Most populations experienced sig-
nificant improvement (Fig. 1A), and the grand
mean fitness increased by 3.0% (Fig. 1B).

To examine the shape of the fitness trajectory,
we competed samples from all 12 populations and
up to 41 time points against the ancestor (11). We
compared the fit of two alternative models with
the fitness trajectories. The hyperbolic model de-
scribes a decelerating trajectory with an asymptote.
The power law also decelerates (provided the ex-
ponent is <1), but fitness has no upper limit.

Hyperbolic model

w ¼ 1þ at=ðt þ bÞ

Power law

w ¼ ðbt þ 1Þa

Mean fitness is w, time in generations is t,
and each model has two parameters, a and b.
Both models are constrained such that the an-
cestral fitness is 1, hence the offset of +1 in the
power law. The hyperbolic model was fit to the
first 10,000 generations of the LTEE (9), but oth-
ers suggested an alternative nonasymptotic tra-
jectory (12). The grandmean fitness values and the
trajectory for each model are shown in Fig. 2A
and the individual populations in fig. S1. Both
models fit the data very well; the correlation co-
efficients for the grand means and model trajec-
tories are 0.969 and 0.986 for the hyperbolic and
power-law models, respectively. When Bayesian
information criterion scores (11) are used, the power
law outperforms the hyperbolic model with a pos-
terior odds ratio of ~30 million (table S1). The
superior performance of the power law also holds
when populations are excluded because of in-
complete time series or evolved hypermutabil-
ity (table S1). The power law provides a better
fit to the grand-mean fitness than the hyper-
bolic model in early, middle, and late generations
(fig. S2). The power law is supported (odds ratios
>10) in six individual populations, whereas none
supports the hyperbolic model to that degree
(table S2). The power law also predicts fitness
gains more accurately than the hyperbolic model.
When fit to data for the first 20,000 generations
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Fig. 1. Fitness changes in nine E. coli populations between 40,000 and 50,000 generations. (A)
Filled symbols: six populations whose improvement was significant (P < 0.05); open symbols: three
populations without significant improvement. (B) Grand-mean fitness at 40,000 and 50,000 generations
relative to 40,000-generation competitor and the ratio of means showing overall gain. Error bars are 95%
confidence limits based on replicate assays (A) or populations (B).
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only, the hyperbolic model badly underestimates
later measurements, whereas the power-law trajec-
tory predicts them accurately (Fig. 2B and fig. S3).

The power law describes the fitness trajecto-
ries well, but it is not explanatory. We have de-
rived a dynamical model of asexual populations
with clonal interference and diminishing-returns
epistasis, which generates mean-fitness trajecto-
ries that agree well with the experimental data.
Clonal interference refers to competition among
organismswithdifferent beneficialmutations,which
impedes their spread in asexual populations
(13–16). Diminishing-returns epistasis occurswhen
the marginal improvement from a beneficial mu-
tation declines with increasing fitness (5, 6). We
outline key points of the model below (11).

We used a coarse-grained approach that de-
scribes the magnitudes and time scales of fixation
events (13). Beneficial mutations of advantage s are
exponentially distributed with probability density
ae–as, where 1/a is the mean advantage. This
distribution is for mathematical convenience; the
theory of clonal interference is robust to the form
of the distribution (13). We assume that delete-
rious mutations do not appreciably affect the dy-
namics; deleterious mutations occur at a higher
rate than beneficial mutations, but the resulting

load is very small relative to the fitness increase
measured over the course of the LTEE (17).

We assume the distribution of available ben-
efits declines after a mutation with advantage 〈s〉
fixes, such that a increases by a factor linearly
related to 〈s〉:

anþ1 ¼ anð1þ g〈snþ1〉Þ

where g > 0 is the diminishing-returns parameter,
〈sn〉 is beneficial effect of the nth fixed mutation,
and an is a after n fixations. Then, the mean fit-
ness of an asexual population adapting to a con-
stant environment is approximated by (11):

w ≈ 2g〈s1〉eg〈s1〉
t

〈t1〉
þ 1

� �1
2g=

where 〈s1〉 and 〈t1〉 are the beneficial effect and
fixation time, respectively, for the first fixedmutation.

Comparing this formula with the power law,
g = 1/2a. The value of g estimated for the six
populations that retained the low ancestral mu-
tation rate throughout 50,000 generations is 6.0
(95% confidence interval 5.3 to 6.9). In the LTEE,
the beneficial effect of the first fixation, 〈s1〉, is
typically ~ 0.1 (1, 9, 10). It follows that the dis-

tribution of beneficial effects immediately after
the first fixation is shifted such that the mean
advantage is 1=ð1þ g〈s1〉Þ ≈ 63% of its initial
value (11). This estimate of g also accords well
with epistasis observed for early mutations in one
of the populations (fig. S4). In principle, gmight
vary among populations if some fixed mutations
lead to regions of the fitness landscape with dif-
ferent epistatic tendencies (18). However, an analy-
sis of variance shows no significant heterogeneity
in g among the six populations that maintained
the ancestral mutation rate (P = 0.3478) (table
S3). The g values tend to be lower for several
populations that evolved hypermutability (table
S4). However, these fits are confounded by the
change in mutation rate; we show below that it is
not necessary to invoke a difference in diminishing-
returns epistasis between the hypermutable pop-
ulations and those that retained the low ancestral
mutation rate.

Diminishing-returns epistasis generates the
power-law dynamics through the relation between
a and g. Clonal interference affects the dynamics
through the parameter b, which depends on 〈s1〉
and 〈t1〉, which in turn are functions of the pop-
ulation size N, beneficial mutation rate m, and
initial mean beneficial effect 1/a0 (11). For the
LTEE, N = 3.3 × 107, which takes into account
the daily dilutions and regrowth (1). However,
m and a0 are unknown. Pairs of values that all
match the best fit to the populations that re-
tained the low mutation rate are shown in Fig. 3A.
The expected values for beneficial effects and
fixation times across a range of pairs are shown in
Fig. 3B. The dynamics are similar among pairs
with high beneficial mutation rates (m > 10−8),
giving 〈s1〉 ≈ 0:1 and 〈t1〉 ≈ 300 generations for
the first fixation, which agree well with observa-
tions from the LTEE (1, 9, 10). At lower values of
m, adaptation becomes limited by the supply of
beneficial mutations, and fixation times are in-
consistent with the LTEE. This model also pre-
dicts that the rate of adaptation decelerates more
sharply than the rate of genomic evolution (fig.
S5), which is qualitatively consistent with observa-
tions (10, 11). The model assumes that individual
beneficial mutations sweep sequentially, although
“cohorts” of beneficial mutations may co-occur,
especially at high m (11, 15, 16, 19). However, the
inferred role of diminishing returns in generating
population mean-fitness dynamics is unaffected
by this complication, because the power-law ex-
ponent is independent of m. Moreover, we have
verified by numerical simulations that co-occurring
beneficial mutations have no appreciable affect
on long-term fitness trajectories over the range of
parameters considered here (fig. S6).

Six populations evolved hypermutator phe-
notypes that increased their point-mutation rates
by ~100-fold (11). Three of them became hyper-
mutable early in the LTEE (between ~2500 and
~8500 generations) and had measurable fitness
trajectories through at least 30,000 generations
(table S2). Our model predicts these populations
should adapt faster than those that retained the

Fig. 2. Comparison of hyperbolic and power-lawmodels. (A) Hyperbolic (red) and power-law (blue)
models fit to the set of mean fitness values (black symbols) from all 12 populations. (B) Fit of hyperbolic
(solid red) and power-law (solid blue) models to data from first 20,000 generations only (filled symbols),
with model predictions (dashed lines) and later data (open symbols). Error bars are 95% confidence limits
based on the replicate populations.
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ancestral mutation rate. We pooled the data from
these early hypermutators and confirmed that their
composite fitness trajectory was substantially high-
er than that of the populationswith the lowmutation
rate (Fig. 4). If the hypermutators’ beneficial mu-
tation rate also increased by ~100-fold, the differ-
ence in trajectories is best fit by an ancestral rate
m = 1.7 × 10−6 (95% confidence interval 2.5 ×
10−7 to 6.1 × 10−5), although higher values
cannot be ruled out (11). Note that this fit was
obtained by using the same initial distribution of
fitness effects, a0, and epistasis parameter, g, for
the hypermutators and the populations that re-
tained the ancestral mutation rate.

Both our empirical and theoretical analyses
imply that adaptation can continue for a long time
for asexual organisms, even in a constant envi-
ronment. The 50,000 generations studied here oc-
curred in one scientist’s laboratory in ~21 years.
Now imagine that the experiment continues for
50,000 generations of scientists, each overseeing
50,000 bacterial generations, for 2.5 billion gen-
erations total. At that time, the predicted fitness
relative to the ancestor is ~4.7 based on the power-
law parameters estimated from all 12 populations
(table S4). The ancestor’s doubling time in the
glucose-limitedminimal medium of the LTEEwas
~55 min, and its growth commenced after a lag
phase of ~90 min (20). If the bacteria eliminate
the lag, a fitness of 4.7 implies a doubling time of
~23 min (fig. S7). Although that is fast for a min-
imal medium where cells must synthesize most
constituents, it is slower than the 10 min that some
species can achieve in nutrient-rich media (21).
At some distant time, biophysical constraints may
come into play, but the power-law fit to the LTEE
does not predict implausible growth rates even
far into the future. Also, some equilibrium might
eventually be reached between the fitness-increasing
effects of beneficial mutations and fitness-reducing
effects of deleterious mutations (22), although it
is impossible to predict when for realistic sce-
narios with heterogeneous selection coefficients,
compensatory mutations, reversions, and changing
mutation rates.

Fitnessmay continue to increase because even
very small advantages become important over very
long time scales in large populations. Consider a
mutation with an advantage s = 10−6. The prob-
ability that this mutation escapes drift loss is ~4s
for asexual binary fission (13), so it would typ-
ically have to occur 2.5 × 105 times before finally
taking hold. Given amutation rate of 10−10 per base
pair per generation (23) and effective population
size of ~3.3 × 10−7, it would require ~108 genera-
tions for that mutation to escape drift and millions
more to fix. Also, pleiotropy and epistasis might
allow a sustained supply of advantageous muta-
tions, because many net-beneficial mutations have
maladaptive side effects that create opportunities for
compensatorymutations to ameliorate those effects.

The LTEE uses a simple, constant environ-
ment to minimize complications and thus illu-
minates the fundamental dynamics of adaptation
by natural selection in asexual populations. The

medium has one limiting resource and supports
low population densities (for bacteria) to minimize
the potential for cross-feeding on, or inhibition
by, secreted by-products. Frequency-dependent
interactions are weak in most populations, al-
though stronger in some others (24). Also, such
interactions should favor organisms that are more
fit than their immediate predecessor, but they are
not expected to amplify gains relative to a distant
ancestor, as fitness was measured here. In fact,
such interactions may cause fitness to fall relative
to a distant ancestor (25). In any case, small-
effect beneficial mutations should allow fitness to
increase far into the future.

At present, the evidence that fitness can in-
crease for tens of thousands of generations in a
constant environment is limited to the LTEE, but
these findings have broader implications for un-
derstanding evolutionary dynamics and the struc-
ture of fitness landscapes. It might be worthwhile
to examine fitness trajectories from other evolu-
tion experiments in light of our results, although
data from short-term experiments may not suf-
fice to discriminate between asymptotic and non-
asymptotic trajectories. We hope other teams will
perform long experiments similar to the LTEE
and that theoreticians will refine our models as
appropriate.
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Fig. 3. Theoretical model generating power-law dynamics. (A) Parameter pairs for m and a0 that
match best fit of power law to fitness trajectories for populations that retained ancestral mutation rate for
50,000 generations. (B) Expected times and beneficial effects of successive fixations for different pairs
that match the best fit. The a0 values corresponding to each m are shown in (A). In both panels g = 6.0,
and N = 3.3 × 107.

Fig. 4. Effect of hypermutability on observed and predicted fitness trajectories. Black circles:
mean fitness of six populations that retained low ancestral mutation rate. Green triangles: mean fitness of
three populations that evolved hypermutability early in the LTEE, including one with measurable values
through 30,000 generations only. The hypermutators have higher mean fitness at 28 of 31 time points
from 5000 to 50,000 generations. Black curve: Predicted trajectory of dynamic model with m = 1.7 × 10−6,
a0 = 85, g = 6.0, and N = 3.3 × 10

7. Green curve: Predicted trajectory with m increased 100-fold starting
at 4667 generations and all other parameters unchanged.
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Exonic Transcription Factor Binding
Directs Codon Choice and Affects
Protein Evolution
Andrew B. Stergachis,1 Eric Haugen,1 Anthony Shafer,1 Wenqing Fu,1 Benjamin Vernot,1

Alex Reynolds,1 Anthony Raubitschek,2,3 Steven Ziegler,3 Emily M. LeProust,4*
Joshua M. Akey,1 John A. Stamatoyannopoulos1,5†

Genomes contain both a genetic code specifying amino acids and a regulatory code specifying
transcription factor (TF) recognition sequences. We used genomic deoxyribonuclease I footprinting
to map nucleotide resolution TF occupancy across the human exome in 81 diverse cell types.
We found that ~15% of human codons are dual-use codons (“duons”) that simultaneously specify
both amino acids and TF recognition sites. Duons are highly conserved and have shaped protein
evolution, and TF-imposed constraint appears to be a major driver of codon usage bias. Conversely,
the regulatory code has been selectively depleted of TFs that recognize stop codons. More than
17% of single-nucleotide variants within duons directly alter TF binding. Pervasive dual
encoding of amino acid and regulatory information appears to be a fundamental feature of
genome evolution.

Thegenetic code, common to all organisms,
contains extensive redundancy, in which
most amino acids can be specified by two

to six synonymous codons. The observed ratios
of synonymous codons are highly nonrandom,
and codon usage biases are fixtures of both pro-
karyotic and eukaryotic genomes (1). In orga-
nisms with short life spans and large effective
population sizes, codon biases have been linked
to translation efficiency andmRNA stability (2–7).
However, these mechanisms explain only a small
fraction of observed codon preferences in mam-

malian genomes (7–11), which appear to be under
selection (12).

Genomes also contain a parallel regulatory
code specifying recognition sequences for tran-
scription factors (TFs) (13), and the genetic and
regulatory codes have been assumed to operate
independently of one another and to be segre-
gated physically into the coding and noncoding
genomic compartments. However, the potential
for some coding exons to accommodate transcrip-
tional enhancers or splicing signals has long been
recognized (14–18).

To define intersections between the regula-
tory and genetic codes, we generated nucleotide-
resolution maps of TF occupancy in 81 diverse
human cell types using genomic deoxyribonuclease
I (DNaseI) footprinting (19). Collectively, we de-
fined 11,598,043 distinct 6– to 40–base pair (bp)
footprints genome-wide (~1,018,514 per cell type),
216,304 of which localized completely within
protein-coding exons (~24,842 per cell type)

(Fig. 1, A and B; fig. S1A; and table S1). Ap-
proximately 14% of all human coding bases con-
tact a TF in at least one cell type (average 1.1%
per cell type) (Fig. 1C and fig. S1B), and 86.9%
of genes contained coding TF footprints (average
33% per cell type) (fig. S1, C and D).

The exonic TF footprints we observed likely
underestimate the true fraction of protein-coding
bases that contact TFs because (i) TF footprint
detection increases substantially with sequencing
depth (13), and (ii) the 81 cell types sampled, al-
though extensive, is far from complete; we saw
little evidence of saturation of coding TF footprint
discovery (fig. S2).

To ascertain coding footprintsmore completely,
we developed an approach for targeted exonic
footprinting via solution-phase capture of DNaseI-
seq libraries using RNA probes complementary to
human exons (19). Targeted capture footprinting of
exons from abdominal skin and mammary stromal
fibroblasts yielded ~10-fold increases in DNaseI
cleavage—equivalent to sequencing >4 billion reads
per sample by using conventional genomic foot-
printing (fig. S3A)—quantitatively exposing many
additional TF footprints (fig. S3, B to D). Overall,
we identified an average of ~175,000 coding foot-
prints per cell type (fig. S1E), which is 7- to 12-fold
more than with conventional footprinting.

Although coding sequences are densely oc-
cupied by TFs in vivo, the density of TF footprints
at different genic positions varied widely, with
many genes exhibiting sharply increased density
in the translated portion of their first coding exon
(Fig. 1D and fig. S4A). In contrast, internal coding
exons were as likely as flanking intronic sequences
to harbor TF footprints (Fig. 1D). The total num-
ber of coding DNaseI footprints within a gene
was related both to the length of the gene and to
its expression level (fig. S4, B to D).

Given their abundance, we sought to deter-
mine whether exonic TF binding elements were
under evolutionary selection. Fourfold degener-
ate coding bases are frequently used as a model
of neutral (or nearly neutral) evolution (20) but
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